Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains.
نویسندگان
چکیده
Membrane peptidases play important roles in cell activation, proliferation and communication. Human fibroblast-like synoviocytes express considerable amounts of aminopeptidase N/CD13, dipeptidyl peptidase IV/CD26, and neprilysin/CD10, transmembrane proteins previously proposed to be involved in the regulation of intra-articular levels of neuropeptides and chemotactic mediators as well as in adhesion and cell-cell interactions. Here, we report these peptidases in synoviocytes to be localized predominantly in glycolipid- and cholesterol-rich membrane microdomains known as 'rafts'. At the ultrastructural level, aminopeptidase N/CD13 and dipeptidyl peptidase IV/CD26 were found in caveolae, in particular in intracellular yet surface-connected vesicle-like structures and 'rosettes' made up of several caveolae. In addition, clusters of peptidases were seen at the cell surface in flat patches ranging in size from about 60 to 160 nm. Cholesterol depletion of synoviocytes by methyl-beta-cyclodextrin disrupted >90% of the caveolae and reduced the raft localization of aminopeptidase N/CD13 without affecting Ala-p-nitroanilide-cleaving activity of confluent cell cultures. In co-culture experiments with T-lymphocytes, cholesterol depletion of synoviocytes greatly reduced their capability to induce an early lymphocytic expression of aminopeptidase N/CD13. We propose caveolae/rafts to be peptidase-rich 'hot-spot' regions of the synoviocyte plasma membrane required for functional cell-cell interactions with lymphocytes. The peptidases may act in concert with other types of proteins such as receptors and signal transducers localized in these specialized membrane domains.
منابع مشابه
Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures.
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have ...
متن کاملMethods for the study of signaling molecules in membrane lipid rafts and caveolae.
Lipid rafts and caveolae are cholesterol- and sphingolipid-rich microdomains of the plasma membrane that concentrate components of certain signal transduction pathways. Interest in and exploration of these microdomains has grown in recent years, especially after the discovery of the biochemical marker of caveolae, caveolin, and the recognition that caveolin interacts with many different signali...
متن کاملStomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts.
Lipid rafts are sphingolipid- and cholesterol-rich membrane microdomains that are insoluble in nonionic detergents, have a low buoyant density, and preferentially contain lipid-modified proteins, like glycosyl phosphatidylinositol (GPI)-anchored proteins. The lipid rafts were isolated from human erythrocytes and major protein components were identified. Apart from the GPI-anchored proteins, the...
متن کاملCompartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae.
G-protein-coupled receptors (GPCRs) and post-GPCR signalling components are expressed at low overall abundance in plasma membranes, yet they evoke rapid, high-fidelity responses. Considerable evidence suggests that GPCR signalling components are organized together in membrane microdomains, in particular lipid rafts, enriched in cholesterol and sphingolipids, and caveolae, a subset of lipid raft...
متن کاملCholesterol Depletion Disorganizes Oocyte Membrane Rafts Altering Mouse Fertilization
Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assesse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 354 Pt 1 شماره
صفحات -
تاریخ انتشار 2001